Crowd Dynamics

FAIR Criterion Assessment
Model CitationGitHub Link Code Available?License?DOI?Docs?Clean Code?
Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282-4286. https://doi.org/10.1103/physreve.51.4282 helbing-molnar-1995 Not yet startedNo CodeNo LicenseNo DOIB
Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401-420. https://doi.org/10.1109/TAC.2005.864190 olfati-saber-2006 Not yet startedNo CodeNo LicenseNo DOIB
Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407(6803), 487-490. https://doi.org/10.1038/35035023 helbing-etal-2000 Not yet startedNo CodeNo LicenseNo DOIC
Helbing, D., Buzna, L., Johansson, A., & Werner, T. (2005). Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39(1), 1-24. https://doi.org/10.1287/trsc.1040.0108 Create IssueNo CodeNo LicenseNo DOIC
Moussaïd, M., Helbing, D., & Theraulaz, G. (2011). How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 6884-6888. https://doi.org/10.1073/pnas.1016507108 Create IssueNo CodeNo LicenseNo DOIB
Ward, A.J.W., Sumpter, D.J.T., Couzin, I.D., Hart, P.J.B., & Krause, J. (2008). Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6948-6953. https://doi.org/10.1073/pnas.0710344105 Create IssueNo CodeNo LicenseNo DOIB
Lakoba, T.I., Kaup, D.J., & Finkelstein, N.M. (2005). Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution. Simulation, 81(5), 339-352. https://doi.org/10.1177/0037549705052772 Create IssueNo CodeNo LicenseNo DOIB
Kreft, J.-U., Booth, G., & Wimpenny, J.W.T. (1998). BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology, 144(12), 3275-3287. https://doi.org/10.1099/00221287-144-12-3275 Create IssueNo CodeNo LicenseNo DOIA
Thompson, P.A., & Marchant, E.W. (1995). A computer model for the evacuation of large building populations. Fire Safety Journal, 24(2), 131-148. https://doi.org/10.1016/0379-7112(95)00019-P Create IssueNo CodeNo LicenseNo DOID
Shi, J., Ren, A., & Chen, C. (2009). Agent-based evacuation model of large public buildings under fire conditions. Automation in Construction, 18(3), 338-347. https://doi.org/10.1016/j.autcon.2008.09.009 Create IssueNo CodeNo LicenseNo DOIC
Alizadeh, R. (2011). A dynamic cellular automaton model for evacuation process with obstacles. Safety Science, 49(2), 315-323. https://doi.org/10.1016/j.ssci.2010.09.006 Create IssueNo CodeNo LicenseNo DOIB
Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G., Maini, P.K., & Sumpter, D.J.T. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5464-5469. https://doi.org/10.1073/pnas.0811195106 Create IssueNo CodeNo LicenseNo DOIB
Pelechano, N., & Badler, N.I. (2006). Modeling crowd and trained leader behavior during building evacuation. IEEE Computer Graphics and Applications, 26(6), 80-86. https://doi.org/10.1109/mcg.2006.133 Create IssueNo CodeNo LicenseNo DOIB
Yu, W.J., Chen, R., Dong, L.Y., & Dai, S.Q. (2005). Centrifugal force model for pedestrian dynamics. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72(2), art. no. 026112. https://doi.org/10.1103/PhysRevE.72.026112 Create IssueNo CodeNo LicenseNo DOIB
Liu, Y., & Passino, K.M. (2004). Stable social foraging swarms in a noisy environment. IEEE Transactions on Automatic Control, 49(1), 30-44. https://doi.org/10.1109/TAC.2003.821416 Create IssueNo CodeNo LicenseNo DOIB
Shi, H., Wang, L., & Chu, T. (2006). Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D: Nonlinear Phenomena, 213(1), 51-65. https://doi.org/10.1016/j.physd.2005.10.012 Create IssueNo CodeNo LicenseNo DOIB
Yamamoto, K., Kokubo, S., & Nishinari, K. (2007). Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A: Statistical Mechanics and its Applications, 379(2), 654-660. https://doi.org/10.1016/j.physa.2007.02.040 Create IssueNo CodeNo LicenseNo DOIB
Wagner, N., & Agrawal, V. (2014). An agent-based simulation system for concert venue crowd evacuation modeling in the presence of a fire disaster. Expert Systems with Applications, 41(6), 2807-2815. https://doi.org/10.1016/j.eswa.2013.10.013 Create IssueNo CodeNo LicenseNo DOIB
Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., & Schreckenberg, M. (2004). Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. Journal of Statistical Mechanics: Theory and Experiment, (10), art. no. P10011. https://doi.org/10.1088/1742-5468/2004/10/P10011 Create IssueNo CodeNo LicenseNo DOIB
Yang, L.Z., Zhao, D.L., Li, J., & Fang, T.Y. (2005). Simulation of the kin behavior in building occupant evacuation based on Cellular Automaton. Building and Environment, 40(3), 411-415. https://doi.org/10.1016/j.buildenv.2004.08.005 Create IssueNo CodeNo LicenseNo DOI
Henein, C.M., & White, T. (2007). Macroscopic effects of microscopic forces between agents in crowd models. Physica A: Statistical Mechanics and its Applications, 373, 694-712. https://doi.org/10.1016/j.physa.2006.06.023 Create IssueNo CodeNo LicenseNo DOIB
Yu, W., & Johansson, A. (2008). Modeling crowd turbulence by many-particle simulations. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 76(4), art. no. 046105. https://doi.org/10.1103/PhysRevE.76.046105 Create IssueNo CodeNo LicenseNo DOIB
Karamouzas, I., Heil, P., Van Beek, P., & Overmars, M.H. (2009). A predictive collision avoidance model for pedestrian simulation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5884 LNCS, 41-52. https://doi.org/10.1007/978-3-642-10347-6_4 Create IssueNo CodeNo LicenseNo DOIB
Batty, M., Desyllas, J., & Duxbury, E. (2003). The discrete dynamics of small-scale spatial events: Agent-based models of mobility in carnivals and street parades. International Journal of Geographical Information Science, 17(7), 673-697. https://doi.org/10.1080/1365881031000135474 Create IssueNo CodeNo LicenseNo DOIB